Nonlinear second-order multivalued boundary value problems
نویسندگان
چکیده
In this paper we study nonlinear second-order differential inclusions involving the ordinary vector p-Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain solutions for both the ‘convex’ and ‘nonconvex’ problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.
منابع مشابه
Nonlinear Multivalued Boundary Value Problems ∗
In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when domA 6= R and domA = R , with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come f...
متن کاملBoundary Value Problems for Fractional Differential Inclusions with Four-point Integral Boundary Conditions
In this paper, we discuss the existence of solutions for a boundary value problem of second order fractional differential inclusions with four-point integral boundary conditions involving convex and non-convex multivalued maps. Our results are based on the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory. Full text
متن کاملChebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory
In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...
متن کاملHigher order multi-point fractional boundary value problems with integral boundary conditions
In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کامل